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Convergence of Dynamical Zeta Functions 
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I study poles and zeros of zeta functions in one-dimensional maps. Numerical 
and analytical arguments are given to show that the first pole of one such zeta 
function is given by the first zero of another zeta function: this describes con- 
vergence of the calculations of the first zero, which is generally the physically 
interesting quantity. Some remarks on how these results should generalize to 
zeta functions of dynamical systems with "pruned" symbolic dynamics and in 
higher dimensions follow. 

KEY WORDS: Zeta functions; thermodynamic formalism in dynamical 
systems. 

I N T R O D U C T I O N  

A considerable part  of the investigations of chaotic nonlinear systems has 
been devoted to the study of various characteristic numbers;  Lyapunov  
exponents for the divergence of nearby trajectories, fractal dimensions for 
the intricate shapes of at tractors and repellers, and entropies describing the 
loss of information of  initial condit ions over time. (1) 

Other  examples of characteristic numbers  are escape rates (2) from 
repellers, resonances in correlat ion functions, (a) and semiclassical eigen- 
values of the corresponding quan tum problem for conservative systems. (4,s) 

Averages like Lyapunov  exponents are invariant under  smooth  defor- 
mat ions  of the representat ion of a dynamical  system, in particular in what  
set of coordinates  it is displayed, but  they are normal ly  calculated by brute 
force. This is unsatisfying if one has the (very distant) aim of classifying 
chaotic dynamic  behavior,  and can also be bothersome for practical pur- 
poses if convergence to the asymptot ic  value is slow. One would therefore 
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968 Aurell 

like to have a more analytic object to study, from which one could 
calculate the averages, and which would hopefully converge in a nice way. 

Now, there is such a characteristic function, called, by formal analogy 
to Euler's product formula for Riemann's zeta function, an (inverse) 
dynamical zeta function(6): 

E ] ~ l ( z ,A)= l - I  1 - z P e x p  ~ A(f~(x)) (1) 
p k ~ O  

where the product goes over p, the primitive (nonrepeating) orbits of a 
map x -~ f (x) ;  p also denotes the length of the orbit in numbers of iteration 
steps, and A is smooth function on state space. If prefer to write such a 
function of z as 

X(z) = [ I  (1 -ZPtp)=~ z%k (2) 
p 

where tp, the quantity associated to periodic orbit p, could be negative in 
sign. 

Although in principle straightforward, it is not widely known how to 
write down the appropriate zeta function for a corresponding average 
quantity, so for completeness I repeat the derivation of how to calculate 
generalized Lyapunov exponents, ~7) defined by 

df" p 
A~(fl)= lim A~(fl); A~(fi)= l o g Z p i  ~xi (3) 

(i) 

where pi is the weight given by the measure d/~ to the ith element of a parti- 
tion of state space that is made finer as n tends to infinity. The standard 
(leading) Lyapunov exponent is related to the generalized ones by 

dr 
2"=dA"(fl) - 1  ~ P~l~ dxi (4) 

dfl f l = 0 - n  (i) 

At least for hyperbolic systems, one can choose a partition after periodic 
orbits, ~8~ such that, for the natural measure on chaotic attractors with one 
expanding direction, the sum runs over periodic orbits of length n, and 
pi~rDir-l= ]dff/dx~l -~. If there are many expanding directions, one 
should take the inverse of IL~r, the absolute value of the product of all 
expanding eigenvalues of the derivative matrix, and on a repeller one 
would have a normalize the total measure to one by the escape rate, which 
can be found as the exponential decrease of Z~) ILil 1.(2) In any of these 
cases, pi is a calculable quantity that only depends on the eigenvalues 
derivative matrices of periodic orbits, which are invariant quantities. 
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Hence, in the sense of logarithms, 

Idf"t 
(i) i 

(5) 

and we can also calculate A(/3) from the value of z at which the generating 
function 

B) = E (6) 

diverges. For a one-dimensional attractor, (2 is connected to the zeta 
function 

~-l(z,  f l _ l ) = [ i ( l _ z P l D p l ~ l D p ]  1) 
P 

(7) 

through (2(z, f l ) = - ( z d / d z )  log {- l (z ,  f i - 1 ) .  With more expanding direc- 
tions and on repellers, one would have to modify the term [Dp[-1 as 
described above. A(fi) is hence - l o g  z 0, where z 0 is the first positive zero 
of ~-l(z ,  fl-- 1). 

Only recently has it become clear how to turn this formula into an 
efficient means of evaluating the average quantity. The simple recipe is to 
treat the inverse zeta function as an ordinary function in the complex 
variable z, and calculate the location of the first zero by truncating the 
power series to a finite polynomial. (9/ For  this to work, the convergence 
radius has to stretch at least to the location of the first zero: in the ideal 
case convergence is limited by a pole at zl of larger absolute value; then 
ck ~ z l  k, and around Zo the terms in the power series go down exponen- 
tially as (Zo/Zl) k. The convergence of the calculation of z 0 is hence 
exponential with the cutoff, and it suffices to know relatively few short 
periodic orbits to arrive at a good estimate of the correct answer. Rigorous 
results of Ruelle and others (6'1~ show that for hyperbolic systems, and the 
quantity evaluated being multiplicative over the points of the orbit as in 
Eq. (1), the smallest zero of the inverse zeta function is indeed isolated, and 
the power series converges beyond that first zero. 

My aim in this paper is to calculate zl,  that is, just how far the power 
series converges. More modestly, my numerical examples are from one- 
dimensional expanding (but nonlinear) maps, and the arguments are 
phrased for that case. In the discussion section I try to argue that though 
similar results are expected to hold for hyperbolic systems, when the the 
quantity associated with an orbit is multiplicative over the points of the 
orbit, they should fail if any of these conditions are not fulfilled. The latter 
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condition excludes, for instance, Lyapunov exponents if there are several 
expanding ones, but not the escape rate from a repeller, which is deter- 
mined by the product of the expanding eigenvalues. 

1. C O M B I N A T O R I C S  OF THE ZETA FUNCTION 

The underlying reason why the power series of ~-~ converges faster 
than one would expect judging from the size of the factors in the represen- 
tation as an infinite product (in other words: why the first pole is farther 
from the origin that the first zero) is that the coefficients of the higher 
orders in z can be written as offsets between primitive orbits, and estimates 
of the same from shorter orbits. For these offsets Cvitanovi6 has coined the 
term "curvatures, ''~9) and when the estimates are close, as they are in hyper- 
bolic systems, the curvatures will be small. 

For definitiveness, consider a one-dimensional repeller: the non- 
wandering points of an overshooting tent map (see Fig. 1). The orbits are 
then labeled by sequences in the symbols 0 and 1, corresponding to 
passages on the left-hand and right-hand sides of the "hole." The primitive 
orbits are labeled by periodic sequences in the symbols 0 and 1 that are 

/ /  " ~ ~  

�9 / /  

/ 

(a) 

Fig. l. (a) An overshooting tent map. The symbolic itinerary of a point is given by "0" on 
each passage on the left-hand side of the hole, and "1" on each passage on the right-hand side. 
Infinite symbol sequences correspond to points that stay in the interval for all times. (b) A 
two-scale approximation to the map in panel (a). (c) A four-scale approximation to the map 
in panel (a). 
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(Continued) 

not repeats of shorter periodic sequences and counted 
permutation. The zeta function written out then looks like 

( - l ( z ) = l - z ( t o + t l ) - z 2 ( t o l - t o  . t l )  

- - z 3 ( t o o i - t o ' t m + t o l l - t o l " t ~ )  

- z 4 ( t o o o l - t o  . t o m + t o o l l - t  0 "to~l 

- t o m .  t l + t o . t  1 �9 t m + t o x 1 1 - t 0 1 1  . t~) 

modulo circular 

- z S (  -.- ) (8) 
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Up to this order the choice of "counterterms" to a given periodic orbit is 
compelling: it is clearly the terms of type to1 - to  q ,  too l  - t o . t o 1  , . . . ,  that we 
would like to identify as curvatures. It seems hard, though, to give a com- 
binatorial definition that works on all orbits to all orders in z, so in the 
following ! address the more limited goal of rearranging the periodic orbits 
in terms whose offsets are small. Probably they are not optimal choices for 
curvatures, in so far as such a choice exists, but nevertheless one can draw 
some useful conclusions about the convergence of the power series for ~ 1. 

Suppose now that all quantities ts only depend on finitely many bits 
in the binary address; this amounts to assuming that the map is piecewise 
linear, and that the different linear pieces map onto each other 
appropriately (see Fig. lb and lc). Feigenbaum (u/ has shown how to 
describe this motion by Markov diagrams that code the passage between 
the different subintervals (see Fig. 2). This entails that a cycle derivative, 
say DOOlO 1 is approximated by 

~ro~roal(ro(r 1 ( N = 0 )  

0"000"010"100"010"10 ( N =  1) 

(7001 O"0100"101 0"0100"100 (N = 2) 

O"00100"01010"10100"01000"1001 ( N =  3) 

(9) 

Fig. 2. 

N'=O, N=I.. 

N=s 

<2> 
/V=5. 

The Markov diagrams describing better and better approximations to the motion 
under iterations of the tent map. 
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where the a's are factors attached to the links in the Markov diagrams, and 
can be identified as slopes in the corresponding intervals of the piecewise 
linear map. The zeta function approximating all quantities to have finite 
dependence on the coding symbols is 

[-I (1 - z P t p ) = ~  zkak (10) 
p 

where in the Nth  approximation, ak is the sum over all closed paths of 
length k that do not cut themselves on the Nth graph and all products of 
shorter closed paths with combined length k that do not cut themselves 
and do not mutually intersect, each path in each product with minus sign. 
Let us consider one closed path that cuts itself on the N = 3 graph, (00101) 
(see Fig. 3). 

The crossing-node is marked 010. In the full zeta function there is a 
term zS(tool �9 tol), which on this graph is not distinguishable from ZStoolol, 
and therefore cancels. The combination 

(00101)  = 0 0 1 0 1 - 0 0 1  �9 01 = t0oJo 1 -  to01 . t m (11) 

should be generally be small. 
Let us formalize the procedure: start with any periodic sequence in the 

symbols. In a sufficiently high-N graph the corresponding loop does not 
cut itself, but if we descend down the hierarchy of approximations we will 
find one where it does so, which defines what we may call the order of a 
cycle. As a mnemonic device we call the collection of terms in the full 
product that fit the cycle on the graph of its order a complex. A term in a 
complex, a cycle or product of cycles, can be referred to as a radical. A list 
of complexes with their radicals by length in a binarily coded set is given 
in Table I. 

Fig. 3. The path of the cycle 00101 traced on the N =  3 Markov diagram. 
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Tab le  I 

O f  l eng th  = 2 complexes  a re  

O f  l eng th  = 3 complexes  a re  

O f  l eng th  = 4 complexes  are  

< 0 1 ) = 0 1 - 0 . 1  

( 0 0 1 )  - 001 - O1 * 0 

( 0 1 1 > = 0 1 1 - 0 1 . 1  

( 0 0 0 1 )  = 0001 - 0 0 1  * 0 

( 0 0 1 1 )  = 0 0 1 1 - 0 0 1  * 1 - 0 1 1  * 0 + 0 1  * O* 1 

< 0 1 1 1 ) = 0 1 1 1 - 0 1 1 . 1  

O f  l eng th  = 5 complexes  a re  

O f  l eng th  = 6 complexes  a re  

< 000001 > 
( o o o o l  1 ) 

( 0 0 0 1 0 1 )  

< 0 0 0 1 1 1 >  

( 0 0 1 1 0 1  ) 

< 0 0 1 1 1 1 >  

( 0 1 0 1 1 1 )  

( 0 1 1 1 1 1 >  

O f  l eng th  = 7 complexes  a re  

<0000001 

<oooooll 
( 0 0 0 0 1 0 1  

( 0 0 0 0 1 1 1  

( 0 0 0 1 0 0 1  

<0001101 

( 0 0 0 1 1 1 1  

<0010011 

<0010101 

<0011011 

( 0 0 1 1 1 0 1  

<0011111 

<0101011 

( 0 1 0 1 1 1 1  

( 0 1 1 0 1 1 1  
( 0 1 1 1 1 1 1  

<00001 > = 00001 --  0001 * 0 

< 0 0 0 1 1 )  = 0 0 0 1 1 - - 0 0 1 1  * 0 

( 0 0 1 0 1  > = 0 0 1 0 1  - 0 0 1  * O1 

<00111 > = 0 0 1 1 1 - - 0 0 1 1  * 1 

( 0 1 0 1 1 ) = 0 1 0 1 1 - - 0 1 .  101 

( 0 1 1 1 1 ) = 0 1 1 1 1 - - 0 1 1 1 .  1 

= 0 0 0 0 0 1  - 0 0 0 0 1  * 0 

= 0 0 0 0 1 1 - 0 0 0 1 1  * 0 

= 0 0 0 1 0 1 - 0 0 0 1  * O1 

= 0 0 0 1 1 1 - 0 0 0 1 1  * 1 - 0 0 1 1 1  * 0 + 0 0 1 1  * O* 1 

= 0 0 1 1 0 1 - 0 0 1 1  * 1 0 - 0 0 1  * 0 1 1 + 0 0 1 0 1 1  

= 0 0 1 1 1 1 - 0 0 1 1 1  * 1 

= 0 1 0 1 1 1 - - 0 1  * 1011 

= 0 1 1 1 1 1 - 0 1 1 1 1  * 1 

= 0000001 - 000001 * 0 

= 0000011 - 000011 * 0 

= 0 0 0 0 1 0 1 - 0 0 0 0 1  * 0 1 - 0 0 0 1 0 1  * 0 + 0 0 0 1  * O* O1 

= 0000111 - - 0 0 0 1 1 1  * 0 

= 0001001 - 0001 * 001 

= 0 0 0 1 1 0 1 - 0 0 0 1 1  * 1 0 - 0 0 0 1  * 011 + 0001011 

- - O 0 1 1 0 1 * O + O 0 1 1 * O *  1 0 + 0 0 1 . 0 . 0 1 1  0 0 1 0 1 1 . 0  

= 0 0 0 1 1 1 1 - 0 0 0 1 1 1  * 1 

= 0 0 1 0 0 1 1 - 0 0 1  * 1001 

= 0 0 1 0 1 0 1 - 0 0 1 0 1  * O1 

= 0 0 1 1 0 1 1 - 0 0 1 1  * 011 

= 0 0 1 1 1 0 1 - 0 0 1 1 1  * 1 0 - 0 0 1 1 0 1  * 1 + 0 0 1 1  * 1 * 10  

- 0 0 1  * 0111 + 0 0 1 0 1 1 1  + 0 0 1  * 011 * 1 - 0 0 1 0 1 1  * 1 
= 0 0 1 1 1 1 1 - 0 0 1 1 1 1 . 1  

= 0 1 0 1 0 1 1 - 0 1  * 10101 

= 0 1 0 1 1 1 1 - 0 1 0 1 1 1 . 1 - 0 1 . 1 0 1 1 1 + 0 1 . 1 0 1 1 . 1  

= 0 1 1 0 1 1 1 - 0 1 1  * 1101 
= 0 1 1 1 1 1 1 - 0 1 1 1 1 1 . 1  

Table cont inued 
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Of length = 8 complexes are 

(00000001 ) = 00000001 
(00000011 ) = 00000011 
(00000101) = 00000101 
(00000111 ) = 0 0 0 0 0 1 1 1  

(00001001) = 00001001 
(00001011 ) = 0 0 0 0 1 0 1 1  

(00001101 ) = 00001101 
(00001111) = 00001111 
(00010101) = 00010101 
(00011001 ) = 00011001 
(00011011 ) = 0 0 0 1 1 0 1 1  

- - 0 0 0 0 0 0 1  * 0 

- 0 0 0 0 0 1 1  * 0 

--0000101 * 0 
--0000111 * 0 
-- 00001 * 001 
-0001011  * 0 
-0001101  �9 0 
--0000111 * 1 -0001111  �9 0+000111  * O* l 
- 0 0 0 1 0 1  * O1 
--00011 * 100--0001 * 0011 +00010011 
--00011 �9 011 

(00011101) =00011101-000111  �9 10--0001101 , 1 +00011 , 1 , 10 
0001 , 0111 + 00010111 +0001 , 011 , 1 -0001011  , 1 

-0011101  , 0+00111  , 0 , 1 0 + 0 0 1 1 0 1  , 0 , 1 - 0 0 1 1  , O ,  1 , 10 
+ O 0 1 , O , O l l l - O 0 1 0 1 1 1 , O - O 0 1 , O , O l l , l + O 0 1 0 1 1 , O ,  1 

(00011111) =00011111-0001111  , 1 
(00100101) = 00100101 
(00100111 ) = 0 0 1 0 0 1 1 1  

(00101011 ) = 0 0 1 0 1 0 1 1  

(00101 lO1 ) = OOlO1 lO1 
(O0101111) =O0101111 
(OO110101 ) = OO1 lOlO1 
(00111011 ) = 00111011 
(OO111 lO1 ) = 00111101 
( O O l l l l l l )  = O O l l l l l l  
(01010111)=01010111 
(01011011) =01011011 
(01011111) =01011111 
(01101111) =01101111 
(01111111) =01111111 

- -  OOl * 0 1 0 0 1  

- - 0 0 1  * 10011 
--001011 * O1 
- - 0 0 1 0 1  * 101 - - 0 0 1  * 0 1 0 1 1  + 0 0 1  * O1 * 101 

0010111 * 1 
--001101 * 10 
- 0 0 1 1 1  * 110 -0011  * 0111 +00110111 
-0011101 * 1 
- 0 0 1 1 1 1 1 .  1 

- 0 1  * 1 0 1 0 1 1  

- - 0 1 0 1 1  * 101 
- -0101111 ,  1 
- - 0 1 1 .  11011 
--0111111 * 1 

U n f o r t u n a t e l y ,  c o m p l e x e s  d o  n o t  e x h a u s t  t h e  t e r m s  p r o d u c e d  b y  t h e  

z e t a  f u n c t i o n ,  a n d  a r e  t h e r e f o r e  n o t  i m m e d i a t e l y  g o o d  c a n d i d a t e s  f o r  c u r -  

v a t u r e s .  C o n s i d e r  a c o l l e c t i o n  o f  l o o p s ,  w h i c h  w e  s y m b o l i z e  b y  a c o l l e c t i v e  

i n d e x  7. A t  a s u f f i c i e n t l y  h i g h - N  g r a p h  a l l  t h e  l o o p s  a r e  f ree  a n d  d o  n o t  

i n t e r s e c t .  D e s c e n d i n g  i n  t h e  h i e r a r c h y ,  o n e  f i n d s  a d i a g r a m  w h e r e  e i t h e r  a 

l o o p  i n t e r s e c t s  i t s e l f  o r  s e v e r a l  l o o p s  i n t e r s e c t .  O n l y  if  a l l  t h e  l o o p s  c o n n e c t  

a t  o n c e  a r e  t h e y  r e p r e s e n t e d  b y  a r a d i c a l  i n  a c o m p l e x ,  o t h e r w i s e  o n e  m a y  

g r a p h i c a l l y  "fill  u p "  t h e  i n t e r s e c t i n g  l o o p s  a n d  w r i t e  

p e "t com es at loops free 
order N at order N 
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The process is redone for the remaining loops: 

H zC c) 
P e 7 complexes 

not connected 

(13) 

The restriction of nonconnectedness means that no two complexes 
may have loops in radicals in common or jointly be parts of another com- 
plex. The zeta function may thus be written as a sum over (restricted) 
products of complexes: 

[I ( 1 - z % ) =  Z (-1' z tci 
(ct,..., c/) i =  

not connected 

Alternatively, we can continue to shrink the complexes below their order: 
when the graphs cut themselves in a new way we have further "secondary" 
radicals, and we can take care of the terms from the products over discon- 
nected complexes this way. A possible definition of curvatures is then the 
collection of counterterms from primary and secondary radicals, the latter 
if necessarily partitioned between different complexes that coincide on 
lower order diagrams. As the secondary radicals can lie far from the 
primary in coordinate space, it is not clear if this is sensible, and I will not 
persue that question here. 

2. E S T I M A T E S  OF H Y P E R B O L I C  C O M P L E X E S  

In this section the close cancellations between primitive orbits and 
their "counterterms" in hyperbolic systems are used to find the first pole of 
(-1.  Let tp = I D p l  ~ for some ~, and write the average of l-[p~ lOp]  ~ a s  

tc.(z), when 7 are the radicals of c. The radicals can always be joined in 
pairs of opposite sign that only differ in their choice of routing through one 
of the crossing-nodes of the graph of the complex. That node also in 
general indicates the region in coordinate space where the radicals are 
furthest apart, and where most of the difference of their derivative is 

T z generated. It is convenient not to consider directly the difference D~-D~, ,  
but the the logarithm of the quotient between them: 

fx'Y 
D~ ~ N(f(x)) dx 

l o g  O T '  = points along radical y I" 

~ N(f(xT)). (x~ -- xT,) (15) 
points along radical 
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where N, the nonlinearity, is 

N ( f ( x ) )  - 

dlog f ' ( x )  f " ( x )  

dx f ' ( x )  
(16) 

If we have a bound N on the nonlinearity, we may approximate D~, by 
D~ exp(rNI), where I is the offset between the radicals in coordinate space 
where they are furthest apart. That offset is well approximated by the 
inverse derivative of the cycle corresponding to the symbolic address of the 
node where their choice of routing is different, and can be estimated to be 
something like 2 - ~  in size, if 2 is an average expansion rate such as 
Lyapunov exponent, and O is the order. Therefore the absolute value of the 
difference is roughly 

ID; - D~,I ~ to. ) . - ~  (17) 

These approximations are valid if rN .  111 is small, or equivalently, for given 
r when the order of the complex is high enough. One would like here to 
understand the distribution in orders of complexes of given length (large 
enough). This I have not done, more than to the extent that one can easily 
find the best and the worst cases. The best case is illustrated by complexes 
of the type 

( 0 - . . 0 1 )  = 0 . - - 0 1 - 0 . . -  1 * 0 (18) 

If their length is L, their order is L -  1, and the offset kills one power of 
the derivative. Hence such curvatures are of order unity for all L, when r 
is one. 

On the other side of the spectrum we have two terms that correspond 
to two different tilings of an Euler path on a given Markov graph. An 
Euler path goes through every link in a graph precisely once. If we consider 
the graphs of Fig. 2 at level n, they have 2" nodes and 2 ~+1 links. An 
"Euler complex" has 2" crossing-points, which implies that there are in all 
22~ radicals, to compare with the total number of terms in the zeta function 
of that length: 2 2~ Thus, the order is log2 L - 1, and the naive estimate 
shows that a pair of radicals is not much smaller than the bare terms. 
There is, however, no reason not to believe that the signs of all pairs 
making up the big complex fluctuate more or less randomly, so the argument 
does not necessarily imply slow convergence. In any case, it is clear by 
counting that the "worst" cases cannot amount to more than a vanishingly 
small fraction of all terms. A reasonable guess of the distribution of orders 
of complexes with given length would be that the typical order grows as 
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some coefficient of the length between 0 and 1. If so, it follows that the sum 
over all complexes and products over disconnected complexes, the term 
multiplying z k in the zeta function, converges exponentially fast with k. 

However, by a heuristic argument we can do better and actually com- 
pute the convergence rate of the c~, which will turn out to behave essen- 
tially as the best case. The argument parallels Feigenbaum's original 
derivation of the zeta function (in a finite approximation) determining the 
point of divergence of a grand partition function(11): we will treat the zeta 
function summed order to order in z as another grand partition function 
and find the zeta function determining its divergence. Any pair of radicals 
looks essentially like the picture in Fig. 4, where the loops are embedded in 
the graph of the order of the complex, and if necessary other loops multi- 
plying both terms. Now sum up all pairs of radicals corresponding to mul- 
tiple traversals of a: 

( a b - a  * b) + ( a 2 b - a  * ab) + ( a 3 b - a  * a2b) + . . .  (19) 

The pair of type ( a N b - - a * a N - l b )  will be roughly z Ibl IDbl~.z laiN. 
IDa I ~N (Da) -N, where one should keep in mind that the sign of Da remains 
in the second term, as it comes from the offset in coordinate space. The tail 
sums up to 

1 
(20) 

1 - z  lai. iDa]  ~ ( D a )  1 

We thus arrive at the prediction that 

o . .  

1( z, z ) : l ~  (1 - z  p IDpl~)~ ~ 1 - z  I~l. ID~[ ~ (D~) -~ 
P P 

(21) 

f f  

Fig. 4, One pair of radicals in a complex that only differ in the choice of routing through one 
node. 
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diverges at the value of z where 

~ 1,(z, v -  1 ) : l ~  y1 - z  p/Dpl ~ (Dp) 1] = 0  (22) 
P 

a rather nice feature if true. 
Figures 5a-51 present numerical results of a tent map, the representa- 

tion function of the Feigenbaum scaling function. ~12) This is is repeller, and 
the zeta functions ~ l(z, ~) describe Lyapunov exponents of the motion 
remaining on the Cantor set for all time with all symbolic labels having 
equal measure, or fractal dimensions of that set with the same measure. 
The natural measure can be used in a similar way, as described in the 
introduction. (s) I have also investigated a fractional linear approximation 
of the representation function, with qualitatively the same results. The first 
three poles and zeros are extracted by constructing the [3/3] Pad6 
approximation of the series (l). One may note that the smallest zero of the 
zeta function (22) is negative for small T, but is overtaken by a positive 
zero at z around 1/2, and that the same thing happens for leading pole of 
the zeta function (21). Except for cusps around z = 0  and other points 
caused by cancellation errors when poles and nonleading zeros of the same 
zeta function collide, evidently not only the first pole of (21), but also the 
next is very well matched by zeros of (22). Conversely, the poles of (22) are 
well matched by the zeros of (21), with z decreased by two. 

In the next subsection I argue that a probable reason for this is that 
the infinite product of (inverse) zeta functions 

is in fact an entire analytic function of z. If so, 

l(z, ~)_ Z(z, z) (24) 
Z( )(z, r -  1) 

where 

= ( ~ ) ( z ,  z -  1)Z(z,  r - 2 )  (25) 

and so at least the first poles of ~-~(z,v) coincide with the zeros of 
~ '~(z ,  ~ -  1). 
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3. ZETA F U N C T I O N S  A N D  I N V E R S E  D E T E R M I N A N T S  

This section contains two further arguments to determine the location 
of the first pole of ~-1, following the hypothesis at the end of the last 
section. Let us first reconsider the partition sum of Ruelle(6): 

n - - I  

Zn(A)= ~ exp ~ A(fk(x)) (26) 
x ~ F i x  f n k ~ 0 

where A is a continuous real function. As we know from the introduction, 
the exponential in n growth of Z~ is determined by the smallest zero of the 
appropriate zeta function: 

r i l l  

~ z~Z . (A )=~p( z  Iplexp ~ A(f~(Xp)) 
n ~ l  p k - - O  

n 1 

+ z  21pl exp2 ~ A(fk(Xp))+ ... ) 
k - - 0  

= - Z d z l ~  ~I 1 - z P e x p k = 0  ~ A(fk(x)) 

d 
- z ~ l o g  ~-l(z;A) (27) 

If all the periodic orbits are labeled by symbolic addresses, the sum over 
periodic orbits can be identified as a sum over symbol sequences with 
periodic boundary conditions. These sums can then also be considered as 
the traces of the nth powers of the kernel of the Ruelle-Araki operator, 
which acts on a function g defined on binary addresses as 

(Lg)(il, i2,...) = ~ e a(i~ g(io, il, i2,...) 
io 

If the operator has discrete eigenvalues 2i, formally 

z2i 

n = l  

(28) 

so they are a priori related to zeros of ~ 1. That the largest eigenvalue of 
L is isolated implies the result for the smallest zero of ~-1 stated in the 
introduction: they are naturally related by Zo2o = 1. However, the numeri- 
cal and analytic results of the preceding section show that ~-1 has a pole 
for finite z, so it is clear that the relation does not extend to all the higher 
eigenvalues. 
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Following Kadanoff and Tang, (2) it would seem more natural to 
consider an operator acting as 

(Hr = f ~ ~5(z -- y) eA(z)r dz (29) 
y=f l(x) 

The kernel of this integral operator is not bounded, but suppose for a 
moment that it is, for instance, by broadening the delta function to 
6~(z-y). Then it would have a discrete spectrum, with eigenfunctions r 
satisfying 

(H~r = 2. f ~ 6~(z- y) eA(Z)(pn(Z ) dz (30) 
y ~f-l(x) 

and the eigenvalues real if the kernel is Hermitian, but otherwise complex. 
The proof of this is of course completely classical, but as the limit when the 
delta function becomes sharp again sheds light on the zeta functions, it is 
interesting to summarize a few results from Fredholm's theory. (13'14) 

One can form the resolvent function G that satisfies a twinning 
relation with the kernel 

H(x, z)= ~ 6o(z- y)e A(~) 
y=f  l(x) 

as follows: 

G(x, y, 2)=H(x, y)+2 f H(x,s) G(s, y, )o)ds (31) 

and has the power series expansion 

G(X, y, .~)~- ~ A n f ds 1 ds2 . . .ds  n H(x,  $1)H(Sl~ s 2 ) . . . a ( s n ,  y) (32) 
n=0 

convergent for small enough 2. One can write G as the quotient of two 
entire analytic functions D(x, y, 2) and D(2) defined by Fredholm series as 
the sum of antisymmetrized traces of the kernel H: 

D(2) = 1 - 2 f H(x, x) dx 

( - 2 )  2 ~f H(x,x) 
+ 2! 33 H(y,x) 

( _ 2 )  3 H(x, x) 
+--~. f f f  H(y, x) 

H(z, x) 
.q- ... 

H(X, yy)) dx dy 
H(y, 

H(x, y) H(x, z) 
H(y, y) H(y, z) dx dy dz 
H(z, y) H(z,z) 

(33) 
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and similarly for D(x, y, 2). The D is connected to the trace of G in a very 
similar way as the zeta function is connected to the generating function: 

d 
D(2) f dsG(s,s, 2) ~ 2 n - l t r ( H )  n (34) 

For  a kernel bounded by M, every row vector formed by n of the H's with 
different arguments cannot be larger than M.n 1/2, and the determinant 
cannot be larger than the volume spanned by orthogonal vectors of that 
length: M n .n n/:. Hence D is analytic in 2, because the Taylor series (33) 
converges for all 2. The eigenvalues of H are the poles of G. These are the 
zeros of D, so this function is a characteristic equation for the eigenvalues 
of H, and is called the Fredholm determinant of the operator. 

If one now makes the delta function in the kernel sharp, the traces of 
powers of H are simply 

exp 27,= ~ A(ff(x)) 
t r (H)" = Z ~e i~  ~ b F - - - - g ~  (351 

x e F i x f  n 

where the denominator arises from the integration over the delta function. 
One sees here that if any of the eigenvalues of a periodic orbit is marginal, 
the expression blows up, so hyperbolicity is a necessary assumption. In one 
dimension the denominator can be written out as an infinite sum 

1 - ~ [DF-n(x)] ' (36) 
det(1-DF-n(x)) ~=o 

If one thus forms the generating funtion by summing over all orders, one 
obtains a double sum over prime orbits and l: 

~ z" t r (H)  ~ 
n = l  

l = 0  p 

i aogO( _   
- - Z d z  l = 0  

= - z ~zz log t=l~ ~ 1 - z  p 

= - z  d log Z(z, A) 

{expI~=loA(fk(x))J}Dp ') 

{exp I~=lo A(fk(x))I} DS)  

(37) 
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The notation Z for the infinite product of zeta functions with decreasing 
powers of the cycle derivatives is borrowed from the last section. The 
infinite product of Ruelle zeta functions is therefore the limit as the delta 
functions are made sharp of Fredholm determinants, each of which is entire 
analytic in z. 

In the absence of proof, one how has to turn to plausibility arguments 
for why the limit is not singular. First, although the classical argument for 
the analyticity of d e t ( 1 - z H )  does not work in the limit, since the bound 
from the maximum of the kernel diverges, each antisymmetrized trace, 
being sums of products of terms like Eq. (35), remains finite. Broadening 
the delta function is equivalent to adding noise to the deterministic 
dynamics, 

(H~b)(x) = I f  y, 6(z-  y)eA(Z)~(z)dz) (38) 
y = f  l(x)+~_ 

so the trace of a power of H~ is a sum over noisy periodic orbits, averaged 
over the noise. It is generally taken for granted that hyperbolic systems 
should be stable against noise, and if one supposes that this is so also in 
this case, the sharp delta functions will not differ markedly in effect from 
the broadened ones. 

On the other hand, if the noise level is sufficiently small, each orbit 
with noise can be shadowed closely by a deterministic trajectory, with 
accuracy independent of the length of the orbit, so t r (H;)  must change 
smoothly as a goes to zero. One may therefore try to do perturbation 
theory. Taking for simplicity 6~ to be a Gaussian with half-width ~, one 
has 

~ cr2Z(2l- 1)Iv 
H~(x) = y, 6(z-- y)e A(zt + (2/)! "" 6(2t)(z- y)e A(z) (39) 

y = f - I ( x )  l =  1 

where 6 ~2), etc., is short-hand for the operator that extracts the second 
derivative. Hence the sum in Eq. (37) will only change by order a 2 in its 
region of convergence (below the inverse of the lowest eigenvalue of H), 
and for C ~ functions, the perturbation series in tr implied for the 
Fredholm determinant is convergent in that same region. This certainly 
suggests that the same statement holds in the entire z plane, but needless 
to say does not constitute proof. 

As a second argument, I appeal to rigorous results by Ruelle that seem 
to point in the same direction. ~15) His first results suppose that both the 
dynamics f and the weighting function ~o = e A are real analytic, and show 
that if so, the zeta functions extend to meromorphic functions in z, with 
isolated leading zero, which can be written as quotients of two entire 
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analytic functions. It is not clear how important analyticity is, periodic 
orbits and their eigenvalues are invariants of even C ~ conjugacy, while it 
would be prudent to assume that analyticity is notfl 

To arrive there, Ruelle considers operators that act on k-forms co as 

(Lkco)(z) = ~ qo(y){[A~(f'(y)) -1 ] co(y)} 
y = f  l(z) 

(40) 

where Ak(f'(y)) ~ is the totally antisymmetrized product of k copies of the 
inverse derivative m a t r i x f ' ( y ) - 1 .  The operators L~ turn out to be of a type 
called nuclear, to which Fredholm's theory has been generalized, and which 
have determinants that are entire analytic funtions of z. If one remembers 
that 

det{ 1 - [ i f ( y ) ]  -1 } = ~ ( _  1)k Ak(f,(y))-i  
k 

it follows that the zeta function of Ruelle can be written as the product 

~(z, A ) -  I]koda det(1 -zL~) (41) 
I ~k  . . . .  det(1 - ZLk) 

In one dimension there are only 0-forms and 1-forms, so the formula 
simplifies considerably to 

l(z, A) - det(1 -zLo) (42) 
det(1 - zL1) 

If one is willing to disregard that the operators Lo and L1 act on different 
spaces, one would say that in one dimension it looks as if d e t ( 1 - z L 1 )  is 
just like d e t ( ! - z L o ) ,  but with a different weight, i.e., one power of the 
derivative, with sign, less in the weighting function. In all one would like 
to identify d e t ( 1 -  zLo) with Z(z, A), the infinite product of zeta functions 
with decreasing powers of the derivative. This is not then a formal identity, 
because each factor in Z(z, A) has a nice power series expansion, so it can 
be conveniently calculated and its poles and zero determined through Pad6 
approximants. The entire function can then be assembled from the 
products of its factors, where the tailing factors go rapidly to 1 for any 
reasonable z. 

2 Recent  results  show, indeed, if I unde r s t and  them properly,  tha t  C ~~ funct ions are 
sufficient.~6) 
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4. P R U N I N G  A M O N G  THE C O M P L E X E S  

In most dynamical systems coded by symbolic dynamics, there are 
transitions that are not realized by the motion, or sequences that are 
pruned from the set of all words in the symbols. (17) I here consider a 
(simply) pruned symbolic dynamics, and show that the present definition 
of complexes makes sense and is of some use also in this case. Consider the 
golden mean pruning (i.e., 11 not allowed in a binary sequence) (see 
Fig. 6). The N =  1 diagram has the forbidden sequence on one of its links 
(the link from 1 to 1 that has been pruned), and is the smallest diagram 
that correctly produces all words allowed. Call it the basic diagram of the 
golden mean pruning. If the order of a complex is greater than or equal to 
the order of the basic diagram, the complex is either entirely pruned away 
or remains unscathed, depending on whether its graph passes the forbidden 
link on the basic diagram. If the order is smaller, some radicals, all radi- 
cals, or no radicals in a complex may be pruned away. For golden mean 
pruning, 0, 1, and 01 are the only complexes with order lower than 1, and 

(1 )  is entirely pruned 

(0 )  is not pruned at all (43) 

( 0 1 ) = 0 1 - 0 , 1  is pruned to01 

It is the partly pruned complexes that determine the equation for the 
topological entropy 

0 = ~ ( 1 - z  p) (44) 
p 

since the complexes that are entirely pruned or not pruned at all do not 
contribute, by construction. As a consequence, it follows that if one 
evaluates 

[ I  (1-zPtp)=  ~ ZkCk (45) 
p k = 0  

Fig. 6. The basic diagram of golden mean pruning. 
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by truncation in k, all terms with k larger than the order of the equation 
for the topological entropy correspond to unpruned complexes, and should 
be small. Convergence should therefore be smooth, and by our earlier con- 
siderations exponential, beyond the order of the entropy polynomial, if it 
is finite. In general one may expect there to be many pruning rules: each 
rule then prunes the complexes in turn, so one can consider them acting 
one at time, the shorter ones that give the gross structure first. In a pruned 
symbolic dynamics on two symbols, the degree of the equation for the 
topological entropy is less than 2 n+ 1, if n is the order of the basic diagram. 
Although this bound is not usually saturated, it indicates that when there 
are many pruning rules of large order, exponential convergence of the zeta 
function is lost. 

5. D I S C U S S I O N  

Hyperbolic systems in any number  of dimensions have Markov parti- 
tions, i.e., well-defined symbolic dynamics. (18) Therefore, one should be able 
to extend the analysis in Sections 2-4, introduce complexes and radicals, 
and eventually define curvatures. However, if one wants to evaluate a 
quantity that needs one eigenvalue of the linearized map around an orbit, 
for instance, the largest if one calculates the leading Lyapunov exponent, 
the estimates of sizes of complexes as in Section 2 can sometimes be quite 
wrong in the higher-dimensional case. This is so because in a pair of radi- 
cals as in Fig. 4, even though the two linearized maps are close, 

Tab -- :ira- Tb ~ 0 (46) 

the eigenvalues are extracted orbit by orbit in the "counterterm," and 
21(Tab) does not have to be close to 21(Ta) �9 )~i(Tb). Effectively, such mis- 
matches should act as additional pruning rules and dominate the con- 
vergence rate. 3 

In nonhyperbolic systems the basis of the analysis in Section 2 falls 
apart, as one cannot assume that the difference between two radicals is 
small. This is illustrated by the simple example of the Ulam map that maps 
the unit interval to itself by x ~ 4 x ( 1 -  x). It  is standard knowledge that 
this map is conjugate to a linear tent map x~*  1 -  2 I x - ( 1 / 2 ) ] ,  smoothly 
everywhere except at x = 0 and x = 1. The derivative at the fix-point at 

3 At least such was the case in a calculation of the Hausdorff dimension of a two-dimensional 
repeller, where the least expanding eigenvalue is the relevant one. (19) In a map with two 
expanding eigenvalues, they can either be both real or complex conjugate. If the latter 
happens to one member in a pair of radicals, effectively the faster expansion rate is mixed 
with the slower, and the offset between the two terms will be large. 
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x = 0 is 4, but around all other cycles it agrees with the linear map, i.e., 2 p 
in absolute value, if p is the length of the cycle in binary digits. All com- 
plexes that have "0" as a crossing-point are therefore never small: close 
passages to the critical point at x = 1/2 distort the derivatives, and the 
arguments of Section 2 do not apply. The zeta functions can be calculated 
analytically to be (2~ 

~-I(z' 'C)=(|--Z4~) H ( 1 - z p  IOpl ~) 
p#O 

(1 - z4~)(1 - z U  +1) 

1 - z2 ~ 

and 

.~51(z, ~ -  1 ) = ( 1 - z 4 ~ - 1 )  1-I 
p~0 

1 - z 4  ~ -  1 

1 - z 2 3 - 1  

[1 - z p  IOpl ~ (Dp)-~l 

(47) 

and, although rational, they do not satisfy the same relation between the 
zeros and poles as the hyperbolic zeta functions. Depending on the value 
of ~, the leading zero in ~ 1 comes either from the fix-point to the left or 
the product over the other points. One can consider the fix-point at x = 0 
as a special "phase," as it is the image of the critical point and there the 
measure has a square-root singularity, while the other periodic points form 
a normal hyperbolic phase that spans the rest of the interval. In addition, 
the preimages of the critical point can be considered as a nonhyperbolic 
phase, since for a finite number of iterations, the exponential divergence of 
nearby trajectories is killed by the quadratic contraction at the critical 
point. This phase is not seen in the periodic orbits, since contraction 
around a periodic orbit would imply that the orbit is attractive, and then 
the map could not be chaotic, so not all averages are calculable from zeta 
functions in the nonhyperbolic case. (7) 

The normal hyperbolic phase has the peculiar feature that infinite long 
strings of 0's are forbidden (since that is the symbolic address of the fix- 
point at x - -0 ) ,  or in other words: there is a pruning rule of infinite length, 
which is responsible for the denominator in the zeta function (47). The 
convergence of average quantities in the normal phase in this example is 
therefore seen to be dominated not by curvatures (of which there are none, 
since all its periodic orbits have the same instability exponents), but by 
prunings in the remaining hyperbolic phase, when the special fix-point at 
x = 0 is separated out. One would expect that both features persist in less 
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trivial nonhyperbolic maps: there would be not one, but many points that 
compress points so that hyperbolicity is lost, and an effort to determine 
which orbits are pruned, or which are not, and if any "critical" points 
iterate onto periodic orbits or nearly so, brings in all the complexity of the 
description of nonhyperbolic systems. In addition, there could always be 
stable or almost stable periodic orbits of very long length, so high coef- 
ficients in the power series expansions of ~-l  are sensitive to minute 
changes in the map brought on by very small changes in the parameters. 

In conclusion, I conjecture that converge is dominated by curvatures, 
in hyperbolic systems, when the quantity evaluated along a periodic orbit 
is multiplicative over the points on the orbit. This includes derivatives in 
the one-dimensional case, and products over all the expanding or all the 
contracting eigenvalues of the derivative map in the higher-dimensional 
case. Then convergence is exponential, limited by a pole, and the location 
of the pole can be calculated. In the hyperbolic phase of nonhyperbolic 
systems, or in the evaluation of nonmultiplicative functions in hyperbolic 
systems, I conjecture that convergence is dominated by real or effective 
pruning rules of arbitrary length. The concept of curvature would therefore 
seem to be less useful in that case. 

A C K N O W L E D G M E N T S  

I wish to thank Predrag Cvitanovi6 for his patient instruction on zeta 
functions and other things. Parts of this paper were first considered for a 
larger joint paper with Roberto Artuso and Predrag Cvitanovi6 [20]: live 
and electronic discussions with both have been very profitable. ! thank 
Peter Grassberger for suggesting the term "radical." An invitation to a 
minisymposium on nonlinear dynamics at the !CTP in Trieste (October 
1988), where a first version of this paper was presented, is gratefully 
acknowledged. In addition, I thank an anonymous referee for really useful 
criticism. 

REFERENCES 

1. P. Grassberger and I. Procaccia, Measuring the strangeness of strange attractors, Physica 
D 9:189 (1983). 

2. L. Kadanoff and C. Tang, Escape from strange repellers, Proc. Natl. Acad. Sci. USA 
81:1276 (1984). 

3. D. Ruelle, J. Differential Geometry 25:117-137 (1987); V. Baladi, J.-P. Eckmann, and 
D. Ruelle, Resonances for Intermittent Systems, IHES preprint M/88/18. 

4. M. C. Gutzwiller, J. Math. Phys. 12:343 358 (1971), and references by the same author 
cited therein. 

5. P. Gaspard and S. Rice, J. Chem. Phys. 90:2225 (1989); P. Cvitanovi6 and B. Eckhardt, 
Phys. Rev. Lett. 



Convergence of Dynamical Zeta Functions 995 

6. D. Ruelle, Thermodynamic Formalism (Addison-Wesley, 1978). 
7. P. Grassberger, R. Badii, and A. Politti, J. Stat. Phys. 51:135 (1988). 
8. C. Grebogi, E. Ott, and J, A. Yorke, Phys. Rev. A 37:1711 (1988). 
9. P. Cvitanovi6, Phys. Rev. Lett. 61:2729 (1988). 

10. Pollicott, Inv. Math. 85:147-164 (1986). 
11. M. Feigenbaum, J. Stat. Phys. 46:919, 925 (1987). 
12. M. Feigenbaum, J. Stat. Phys. 52:527 (1988). 
13. R. Courant and D. Hilbert, Methoden der Matematischen Physik (Springer-Verlag, Berlin, 

1937) [reprint Interscience (1943)]. 
14. W. Podgorzelski, Integral Equations and their Applications (Pergoman Press, 1966). 
15. D. Ruelle, Inv. Math. 34:131 (1976). 
16. D. Ruelle, The Thermodynamic Formalism for Expanding Maps, IHES preprint P/89/08; 

An Extension of the Theory of Fredholm Determinants, IHES preprint P/89/38. 
17. P. Cvitanovi6, G. Gunaratne, and I. Procaccia, Phys. Rev. A 38:1503 (1988). 
18. R. Bowen, Am. J. Math. 92:725 (1970); and in Springer Lecture Notes in Mathematics, 

Vol. 470 (1975). 
19. E. Aurell, G6teborg preprint 98-10; Phys. Rev. A., (in press). 
20. R. Artuso, E. Aurell, and P. Cvitanovi6, Recycling Strange Sets, submitted to Non- 

linearity. 


